
1. Introduction to Arrays

An array in C language is a collection of elements of the same data type, stored in contiguous
memory locations and accessed using a common name.

Arrays are used when we need to store and process multiple values of similar type efficiently.

Example (Without Array)
int a, b, c, d, e;

Example (With Array)
int a[5];

2. Need for Arrays

Arrays are required to:

 Store large amounts of data efficiently
 Reduce number of variables
 Simplify program logic
 Process data using loops
 Improve memory management

3. Declaration of Arrays

Syntax
data_type array_name[size];

Example
int marks[10];
float price[5];

Important Points

 Size must be constant
 Index starts from 0
 Last index is size − 1

4. Initialization of Arrays

4.1 Compile-Time Initialization
int a[5] = {10, 20, 30, 40, 50};

If size is not mentioned:

int a[] = {1, 2, 3, 4};

4.2 Run-Time Initialization
int i;
for(i = 0; i < 5; i++)
{
 scanf("%d", &a[i]);
}

5. Accessing Array Elements

Array elements are accessed using index number.

Example
printf("%d", a[2]);

6. One-Dimensional Array (1D Array)

A one-dimensional array stores data in a linear form.

Example
int arr[5] = {1, 2, 3, 4, 5};

Program: Sum of Elements
int sum = 0, i;
for(i = 0; i < 5; i++)
 sum += arr[i];

7. Two-Dimensional Array (2D Array)

A two-dimensional array is used to store data in tabular form (rows and columns).

Syntax
data_type array_name[rows][columns];

Example
int mat[3][3];

Initialization
int mat[2][2] = {{1, 2}, {3, 4}};

8. Accessing 2D Array Elements
printf("%d", mat[1][0]);

Nested Loop Example
int i, j;
for(i = 0; i < 2; i++)
{
 for(j = 0; j < 2; j++)
 printf("%d ", mat[i][j]);
}

9. Multidimensional Arrays

Arrays with more than two dimensions are called multidimensional arrays.

Example
int arr[2][3][4];

Used in:

 Scientific calculations
 Image processing

10. Array and Functions

Arrays can be passed to functions.

Example
void display(int a[], int n)
{
 int i;
 for(i = 0; i < n; i++)
 printf("%d ", a[i]);
}

11. Passing 2D Arrays to Functions
void display(int a[2][2])
{
 int i, j;
 for(i = 0; i < 2; i++)
 for(j = 0; j < 2; j++)
 printf("%d ", a[i][j]);

}

12. Array and Pointers

Array name stores the base address of the array.

Example
int a[5];
int *p = a;

Access using pointer:

*(p + 1)

13. Searching in Arrays

13.1 Linear Search
for(i = 0; i < n; i++)
{
 if(arr[i] == key)
 {
 printf("Found");
 break;
 }
}

14. Sorting Arrays

14.1 Bubble Sort
for(i = 0; i < n - 1; i++)
{
 for(j = 0; j < n - i - 1; j++)
 {
 if(arr[j] > arr[j + 1])
 {
 temp = arr[j];
 arr[j] = arr[j + 1];
 arr[j + 1] = temp;
 }
 }
}

15. Advantages of Arrays

 Efficient data storage
 Easy data access
 Compatible with loops
 Reduces code size

16. Limitations of Arrays

 Fixed size
 Stores only same data type
 Insertion and deletion difficult
 Memory wastage possible

17. Common Errors in Arrays

1. Accessing out-of-bound index
2. Wrong size declaration
3. Uninitialized array
4. Confusion in multidimensional indexing

18. Difference Between Array and Variable
Feature Variable Array

Stores values One Multiple

Memory Single Contiguous

Access Direct Index-based

19. Applications of Arrays

 Data processing
 Image and signal processing
 Sorting and searching
 Matrix operations
 Scientific computing

20. Conclusion

Arrays are one of the most important data structures in C language. They allow efficient storage and
manipulation of multiple data values. Understanding arrays is essential for advanced topics like strings,
pointers, structures, and data structures.

