1. Introduction to Arrays

An array in C language is a collection of elements of the same data type, stored in contiguous
memory locations and accessed using a common name.

Arrays are used when we need to store and process multiple values of similar type efficiently.

Example (Without Array)
inta,b,c, d,e;

Example (With Array)
int a[5];

2. Need for Arrays

Arrays are required to:

o Store large amounts of data efficiently
e Reduce number of variables

o Simplify program logic

e Process data using loops

e Improve memory management

3. Declaration of Arrays

Syntax

data_type array_name/size];

Example

int marks[10];
float price[5];

Important Points

e Size must be constant
¢ Index starts from 0
e Lastindexissize-1

4. Initialization of Arrays



4.1 Compile-Time Initialization

inta[5] = {10, 20, 30, 40, 50};

If size is not mentioned:

inta[] ={1, 2, 3,4};

4.2 Run-Time Initialization

scanf("%d", &a[i]);

5. Accessing Array Elements

Array elements are accessed using index number.

Example

printf("%d", a[2]);

6. One-Dimensional Array (1D Array)

A one-dimensional array stores data in a linear form.

Example

intarr[5]={1, 2, 3,4,5)};

Program: Sum of Elements
intsum =0, i;

for(i=0;1i<5;i++)
sum += arr]|i];

7. Two-Dimensional Array (2D Array)

A two-dimensional array is used to store data in tabular form (rows and columns).

Syntax

data_type array_name[rows][columns];

Example

int mat[3][3];

Initialization

int mat[2][2] = {1, 2}, {3, 4}};



8. Accessing 2D Array Elements

printf("%d", mat[1][0]);

Nested Loop Example
inti, j;
for(i=0;1i<2;i++)

{

for(j=0;j<2;j++)
printf("%d ", mat[i][j]);

9. Multidimensional Arrays

Arrays with more than two dimensions are called multidimensional arrays.

Example

Used in:

e Scientific calculations
e Image processing

10. Array and Functions

Arrays can be passed to functions.

Example
void display(int a[], int n)

int i;
for(i=0;i<n;i++)
printf("%d ", a[i]);

11. Passing 2D Arrays to Functions

void display(int a[2][2])
{

inti, j;

for(i = 0’ i< 2, i++)
for(j=0;j<2;j++)
printf("%d ", a[i][j]);




‘

12. Array and Pointers

Array name stores the base address of the array.
Example
int a[5];

int *p = a;

Access using pointer:

13. Searching in Arrays

13.1 Linear Search
for(i=0;i<n;i++)

{

if(arr[i] == key)
{

printf("Found");
break;

}
}

14. Sorting Arrays

14.1 Bubble Sort

for(i=0;i<n-1;i++)

i
for(j=0;j<n-i-1;j++)

if(arr[j] > arr[j + 1])
{

temp = arrJ[j];
arr[j] =arr[j + 1];
arr[j + 1] = temp;
}
}




15. Advantages of Arrays

Efficient data storage
Easy data access
Compatible with loops
Reduces code size

16. Limitations of Arrays

Fixed size

Stores only same data type
Insertion and deletion difficult
Memory wastage possible

17. Common Errors in Arrays

Accessing out-of-bound index

Wrong size declaration

Uninitialized array

Confusion in multidimensional indexing

B =

18. Difference Between Array and Variable

Feature Variable Array
Stores values One Multiple
Memory Single Contiguous
Access Direct Index-based

19. Applications of Arrays

Data processing

Image and signal processing
Sorting and searching
Matrix operations

Scientific computing



20. Conclusion

Arrays are one of the most important data structures in C language. They allow efficient storage and
manipulation of multiple data values. Understanding arrays is essential for advanced topics like strings,
pointers, structures, and data structures.



